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What is the relationship between the wrap angle of a capstan and
the loading force?

   Abraham Cheung

Introduction

A capstan is a device on a ship which increases the loading force of a rope by wrapping it around a
cylinder, allowing sailors to control the movement of a huge load with little loading force.
Microscopically, a portion of the holding force is distributed across the surface of the capstan as
normal forces, known as the Capstan equation. This effect has led to a wide variety of applications,
including windlasses, which are used to raise heavy masses, and provides an understanding of
frictional forces in conveyor belts. Understanding the correct wrap angle of a capstan can help
determine the minimum loading force, which can help prevent injuries in rock climbing activities or
rescue missions.

Although the classical Capstan equation gives a good approximation of the relationship between the
hold force and the load force, several assumptions such as the rope being non-elastic and non-rigid
is often hard to be fulfilled. In fact, Gao et al. has observed an experimental discrepancy of up to
12.58%, while Ramkumar et al. observed that the normal force of a string is not proportional to its
frictional force, with the p-value of 8.29 × 10−΅, below the statistically significant p-value of 0.05.
Therefore, assessing the relationship would allow us to better apply the relationship in real-life
applications.

Framework

The following section aims to derive the classical Capstan Equation:

𝑇փ֊ևտ = 𝑇և֊ռտ𝑒
−ᇋ՘ᇆ (1)

Suppose a small sector of the cross-sectional area of the capstan, for a small angle Δ𝜃, the angle
that the string forms with the tangent of the circle is း

ϵ
ᇆ:

Figure 1. A capstan (left) and its sector depicted as a section of a n-gon as 𝑛 → ∞ (right). 

To find the minimum amount of loading tension (𝑇և֊ռտ) needed for the rope to not slip, the system 
has to be in equilibrium, in other words, the sum of forces in all directions must be 0.  

Δ𝜃

𝑇𝑙𝑜𝑎𝑑 𝑇փ֊ևտ
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Figure 2. A free-body force diagram depicting the forces acting on a small sector of the capstan. 

By decomposing the force vectors, the sum of horizontal forces is 0: 
 𝐹֓ = 0  

−𝑇և֊ռտcos গ
∆𝜃

2
ঘ + 𝑓֎ + (𝑇և֊ռտ + ∆𝑇)cosগ

∆𝜃

2
ঘ = 0 (2)

Using the small angle approximation of 𝑐𝑜𝑠(းᇆ
ϵ

) ≅ 1, Equation (2) becomes: 
 −𝑇և֊ռտ + 𝑓֎ + (𝑇և֊ռտ + ∆𝑇) = 0  

 𝑓֎ = −∆𝑇  (3)

The sum of vertical forces is also 0: 
 𝐹֔ = 0  

−𝑇և֊ռտsinগ
∆𝜃

2
ঘ + 𝑁 − (𝑇և֊ռտ + ∆𝑇)sinগ

∆𝜃

2
ঘ = 0 (4) 

Using the small angle approximation of 𝑠𝑖𝑛(းᇆ
ϵ

) ≅ းᇆ
ϵ

, Equation (4) becomes: 
 −𝑇և֊ռտ গ

∆𝜃

2
ঘ + 𝑁 − (𝑇և֊ռտ + ∆𝑇)গ

∆𝜃

2
ঘ = 0  

 𝑁 = ∆𝑇
∆𝜃

2
+ 𝑇և֊ռտ∆𝜃 (5)

Amonton’s Classic Law of Friction states that: 

𝑓֎ = 𝜇֎𝑁 (6) 

Substituting (3) and (5) and into (6): 
 −∆𝑇 = 𝜇֎ গ∆𝑇

∆𝜃

2
+ 𝑇և֊ռտ∆𝜃ঘ  

 lim
(ႳյӴႳᇆ)→(ЈӴЈ)

∆𝑇

∆𝜃
= lim

(ႳյӴႳᇆ)→(ЈӴЈ)
−𝜇֎ গ

∆𝑇

2
+ 𝑇և֊ռտঘ 

 𝑑𝑇

𝑑𝜃
= −𝜇֎𝑇և֊ռտ (7)

Solving the differential equation by integrating both sides, from 𝜃 = 0 to 𝜃 = θ, and from 𝑇և֊ռտ =

Tΰπ͘ͷ to 𝑇և֊ռտ = T΢πΰͷ, the relationship between the loading force and holding force can be related 
over the wrap angle 𝜃: 

Δ𝜃

𝑓֎

𝑁

𝑇(𝜃) = 𝑇𝑙𝑜𝑎𝑑
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௷

𝑑𝑇

𝑇և֊ռտ

յՑՔՆՉ=ϫȋȩșǠ

յՑՔՆՉ=ϫșȩǁǠ

= −𝜇֎ ௷ 𝑑𝜃
𝜃=θ

𝜃=Ј

  

ln 𝑇փ֊ևտ − ln 𝑇և֊ռտ = − 𝜇֎𝜃  
 𝑇փ֊ևտ

𝑇և֊ռտ

= 𝑒−ᇋ՘𝜃  

 𝑇փ֊ևտ = 𝑇և֊ռտ𝑒
−ᇋ՘𝜃 (8) 

There are several assumptions in this relationship: 

1. The string obeys Amonton’s Classic Law of Friction, as described in (6), where static 
frictional force (𝑓֎) is proportional to the normal force (𝑁). 

2. The string is non-rigid, meaning zero force is needed to bend the string around the capstan, 
as this affects the normal force (𝑁). 

3. The string is non-elastic, as this may affect the coefficient of friction (𝜇֎). 
4. The holding force (𝑇փ֊ևտ) is the absolute minimum tension required for the string to not slip, 

or be in equilibrium, for a given loading force (𝑇և֊ռտ).  

Variables 

Type Name Symbol Description 

Independent 
(Raw) 

Coordinates of 
string in image 

𝑥φ, 𝑦φ 
𝑥ϵ, 𝑦ϵ 
𝑥ϯ, 𝑦ϯ 
𝑥Κ, 𝑦Κ 

Four sets of coordinates that marks the important ends of 
the string. The image is first passed through a Sobel 

Operator1 and GIMP2 is then used to manually mark the 
coordinates. 

Independent Wrap Angle 𝜃 

The subtended angle of a sector of a capstan, where the 
string is in direct contact with the surface, as shown in 
Figure 1. This is measured by processing the four sets of 

coordinates into a series of trigonometric functions, detailed 
in the Appendix. 

Dependent Holding Force 𝑇փ֊ևտ 
The source of tension of the string. This is kept constant by 
using the same slotted mass and ensuring that it does not 

move or rotate during each trial. 

Controlled Loading force 𝑇և֊ռտ  

The minimum force required to hold the mass without the 
rope slipping. This is measured by attaching a dual-range 
force sensor to the end of a string and allowing the holding 

mass to exert tension onto the string. 

Controlled 
Static coefficient 

of friction 
𝜇֎ 

The proportionality constant that relates the loading force to 
the holding force. This is kept constant by using the same 

string and capstan during each trial.  

Controlled Time 𝑡 

The time in which the holding force is applied to the string. 
A stopwatch is used to prevent unnecessary long periods of 

stress on the string, affecting its elasticity or its static 
coefficient of friction.  

 
1 A Sobel Operator is an edge-detecting algorithm emphasizes the edges of an image, hence allowing a higher accuracy when manually 
determining the position of the string, available at https://shd101wyy.github.io/edge-detection/. 
2 An open-source image-processing software, available at https://gimp.org. 
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Pilot Study 

The classical Capstan Equation states that 𝑇փ֊և = 𝑇և֊ռտ𝑒
−ᇋ՘𝜃, showing as the wrap angle (𝜃) 

increases, the loading force (𝑇և֊ռտ) decreases logarithmically:  

Figure 3. A plot of the Capstan equation, where 𝑇և֊ռտ = 8 𝑁  and 𝜇֎ = 0.35 (Gao et al.) 

As the wrap angle tends towards 0, it approaches the loading force, therefore determining a suitable 
value of the loading force is important. According to the specifications of the Vernier dual-range 
force sensor, it has a 0.01N resolution at ±10N range, and a 0.05N resolution at ±50N range. 
According to a research by Huang et al., the tensile strength of two-ply cotton yarn, or the maximum 
force at which the string breaks is 27.27N.  To minimise the risk of accidents and to minimise the 
percentage error, it has been decided to keep the loading force at approximately 8N:  

Figure 4. A plot of the percentage error in the measured loading force against the true loading force. 

The loading force of 10N exactly is not chosen because the force sensor will be zero-calibrated at the 
start of each experiment, meaning a potential wrong assumption of the absolute uncertainty. 

As for the range of independent variables, it has been decided to perform 7 regular intervals of the 
wrap angle from 0 ≤ 𝜃 ≤ Ϩᇎ

Κ
. With reference to Figure 3, because the magnitude of the change in 

holding force over the change in wrap angle is relatively low, the significant of studying the holding 
force beyond 𝜃 = Ϩᇎ

Κ
 would be minimal. 
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Apparatus 

4x G-clamp 
4x Retort Stand 
4x Clamp and Clamp Holder 
1x Protractor 
1x Stopwatch 

1x 2-ply cotton yarn 
1x Vernier dual-range force sensor 
1x Vernier Go-Link 
1x Laptop 
1x Camera 

1x 800g slotted mass 
1x Metal cylinder 
1x Lifting jack 
1x Chair 
1x Tripod 

Procedure and Precautions 

1. Prepare the apparatus and set up according to the following figure:  

Figure 5. A diagram showing the setup of the experiment for 𝜃 = ᇎ
ϵ. 

2. Move the lifting jack to its highest position, such that there is no holding or loading force. 
3. On the laptop, zero the reading and start collecting data continuously. 
4. Move the lifting jack downwards at a very slow rate, increasing the holding force. 
5. When the holding force is observed to reach a plateau, maintain its position for 20 seconds. 
6. Capture an image that covers a significant portion of the string. 
7. Repeat Steps 2-5 for three trials. 
8. Repeat Steps 1-6 for all values of the wrap angle. 

There are several precautions, and with reference to the positions Figure 5 marked with red: 

1. Ensure that the dual-range force sensor is horizontally parallel to the ground (x-y direction). 
and is perpendicular to the string (x-z direction). 

2. Ensure that the string is perpendicular to the cylinder (x-z direction). 
3. Ensure that the lens of the camera is pointed at the cylinder’s centre, is set to the highest 

resolution, lowest aperture to blur the background and focused onto the string’s thread. 

Ethical, safety and environmental concerns 

Since the only waste product in this experiment is string, which is biodegradable, there are no 
significant environmental or ethical concerns. Regarding safety concerns, there is a possibility that 
the string may break, causing the slotted mass to drop, but the possibilities have already been 
minimised by thoroughly researching the tensile strength in the pilot study, placing a lifting jack 
beneath the slotted masses, as well as securely fastening the important components with G-clamps.  

To Vernier Go-Link 
and laptop

Vernier dual-range 
force sensor

Retort stand

Clamp holder 
and Clamp

Metal cylinder

800g slotted 
mass

Lifting jack
Location of 
G-clamp

1m 2-ply 
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Camera 
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Raw Data Table 

Independent Variable – Wrap Angle 

Target Coordinates A Coordinates B 
Average of coordinates 

A and B 

Absolute 
uncertainty in the 

average of 
coordinates 

𝜃֏ռ֍ւր֏ 
rad 

𝑛(𝑥։Ԭ
, 𝑦։Ԭ

) 

px 
𝑛(𝑥։ԭ

, 𝑦։ԭ
) 

px 
𝑛(𝑥։, 𝑦։) 

px 
𝑛(∆𝑥։, ∆𝑦։) 

±px 

𝜋

4
 

1(217, 0), 2(2628, 1628) 
3(3079, 2116), 4(3175, 4000) 

1(235, 0), (2644, 1631) 
3(3090, 2081), 4(3185, 4000) 

1(226, 0), 2(2636, 1634.5) 
3(3084.5, 2098.5), 4(3180, 4000) 

1(9, 0), 2(8, 3.5) 
3(5.5, 17.5), 4(5, 0) 

𝜋

2
 

1(603, 2047), 2(2576, 2006) 
3(3352, 2377), 4(3425, 4000) 

1(601, 2054), 2(2575, 2020) 
3(3360, 2362), 4(3435, 4000) 

1(602, 2050.5), 2(2575.5, 2013) 
3(3356, 2369.5), 4(3430, 4000) 

1(1, 3.5), 2(0.5, 7) 
3(4, 7.5), 4(5, 0) 

3𝜋

4
 

1(589, 3940), 2(2770, 1845) 
3(3267, 1981), 4(3311, 4000) 

1(596, 3945), 2(2771, 1860) 
3(3275, 1957), 4(3317, 4000) 

1(592.5, 3942.5), 2(2770.5, 1852.5) 
3(3271, 1969), 4(3314, 4000) 

1(3.5, 2.5), 2(0.5, 7.5) 
3(4, 12), 4(3, 0) 

𝜋 
1(2634, 4000), 2(2827, 1950) 
3(3275, 1990), 4(3269, 4000) 

1(2643, 4000), 2(2836, 2000) 
3(3285, 1983), 4(3277, 4000) 

1(2638.5, 4000), 2(2831.5, 1975) 
3(3280, 1986.5), 4(3273, 4000) 

1(4.5, 0), 2(4.5, 25) 
3(5, 3.5), 4(4, 0) 

5𝜋

4
 

1(538, 3857), 2(3145, 2075) 
3(2827, 1948), 4(2880, 4000) 

1(543, 3865), 2(3161, 2075) 
3(2838, 1966), 4(2891, 4000) 

1(540.5, 3861), 2(3153, 2075) 
3(2832.5, 1957), 4(2885.5, 4000) 

1(2.5, 4), 2(8, 0) 
3(5.5, 9), 4(5.5, 0) 

3𝜋

2
 

1(717, 2062), 2(3111, 2091) 
3(2957, 1896), 4(3010, 4000) 

1(714, 2071), 2(3114, 2099) 
3(2966, 1908), 4(3017, 4000)g

1(540.5, 3861), 2(3153, 2075) 
3(2832.5, 1957), 4(2885.5, 4000) 

1(1.5, 4.5), 2(1.5, 4) 
3(4.5, 6), 4(3.5, 0) 

7𝜋

4
 

1(515, 0), 2(2889, 2157) 
3(2877, 2123), 4(2925, 4000) 

1(499, 0), 2(2885, 2140) 
3(2863, 2103), 4(2913, 4000)g

1(507, 0), 2(2887, 2148.5) 
3(2870, 2113), 4(2919, 4000) 

1(8, 0), 2(2, 8.5) 
3(7, 10), 4(6, 0) 

 

Dependent Variable – Holding Force 

Target Trial 1 Trial 2 Trial 3 Half Range 

𝜃֏ռ֍ւր֏ 
rad 

𝑇փ֊ևտȯ
± ∆𝑇փ֊ևտȯ

 

N ± N 
∆ЏμϣϬϝϷζ΄μϬ= ±0.01 N 

𝑇փ֊ևտɞ
± ∆𝑇փ֊ևտɞ

 

N ± N 
∆ЏμϣϬϝϷζ΄μϬ= ±0.01 N 

𝑇փ֊ևտɘ
± ∆𝑇փ֊ևտɘ

 

N ± N 
∆ЏμϣϬϝϷζ΄μϬ= ±0.01 N 

𝑇փ֊ևտ ± ∆𝑇փ֊ևտ 

N ± N 
∆ЏμϣϬϝϷζ΄μϬ= ±0.01 N 

𝜋

4
 6.59 ± 0.03 6.59 ± 0.04 6.60 ± 0.04 6.60 ± 0.05 

𝜋

2
 6.12 ± 0.02 6.09 ± 0.02 6.07 ± 0.02 6.09 ± 0.04 

3𝜋

4
 5.21 ± 0.01 5.35 ± 0.02 5.27 ± 0.02 5.29 ± 0.09 

𝜋 4.58 ± 0.03 4.58 ± 0.02g 4.59 ± 0.02 4.58 ± 0.03 

5𝜋

4
 3.35 ± 0.02 3.57 ± 0.02 3.66 ± 0.02 3.50 ± 0.18 

3𝜋

2
 3.49 ± 0.02 3.60 ± 0.02g 3.26 ± 0.02 3.43 ± 0.18 

7𝜋

4
 2.82 ± 0.02 2.91 ± 0.06g 3.00 ± 0.02 2.91 ± 0.11 

Qualitative Observation 

During the experiment, the holding force is observed to decrease logarithmically as the wrap angle 
increases. However, several assumptions outlined in the framework appears to be violated. As an 
example, when the holding force is being increased, the elastic nature of the string caused it to 
extend by a few millimetres, violating assumption 3. Moreover, between trials where the loading 
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force is zero (Step 3), it has been observed that the string to some extent stayed at its initial position 
and did not bend freely, suggesting that it is rigid, violating assumption 2. Most importantly, the 
rate at which the lifting jack is being operated is different between each trial. This means that if the 
loading force is being applied in a very short period of time, the slotted mass is allowed to accelerate 
quickly. Due to this increased downwards acceleration, the tension in the string is higher than 
normal, violating assumption 3, where the loading force is assumed to be at the verge of the string 
slipping. This led to an observable fluctuation between trials when 𝜃֏ռ֍ւր֏ = ϯᇎ

ϵ
. 

Processed Data Table 

Wrap Angle 
Absolute uncertainty in 

Wrap Angle 
−ln(Holding Force) 

Absolute uncertainty 
in −ln(Holding Force) 

𝜃 
rad 

±∆𝜃 
±rad 

−ln 𝑇փ֊ևտ 

−lnN 

±∆ln𝑇փ֊ևտ 
−lnN 

0.925 0.005 −1.887 0.006 

1.544 0.006 −1.807 0.007 

2.314 0.003 −1.67 0.02 

3.050 0.003 −1.522 0.007 

4.139 0.004 −1.25 0.05 

4.749 0.004 −1.23 0.05 

5.473 0.005 −1.07 0.04 

Below is a sample calculation when 𝜃֏ռ֍ւր֏ = ᇎ
Κ
:  

Figure 5. A diagram showing the manual process of extracting 8 coordinates of the edges of the string from 
an image that is passed through the Sobel Operator. 

The coordinates of the centre of the string can be found by taking the half-range of the coordinates 
of the string edges: 

⎝

⎜⎜
⎜⎜
⎛

𝑥φ ± ∆𝑥φ, 𝑦φ ± ∆𝑦φ

𝑥ϵ ± ∆𝑥ϵ, 𝑦ϵ ± ∆𝑦ϵ

𝑥ϯ ± ∆𝑥ϯ, 𝑦ϯ ± ∆𝑦ϯ

𝑥Κ ± ∆𝑥Κ, 𝑦Κ ± ∆𝑦Κ⎠

⎟⎟
⎟⎟
⎞

=

⎝

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎛

𝑥φբ
+ 𝑥φգ

2
,
𝑦φբ

+ 𝑦φգ

2
𝑥ϵբ

+ 𝑥ϵգ

2
,
𝑦ϵբ

+ 𝑦ϵգ

2
𝑥ϯբ

+ 𝑥ϯգ

2
,
𝑦ϯբ

+ 𝑦ϯգ

2
𝑥Κբ

+ 𝑥Κգ

2
,
𝑦Κբ

+ 𝑦Κգ

2 ⎠

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎞

±

⎝

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎛|

𝑥φբ
− 𝑥φգ

2
|, |

𝑦φբ
− 𝑦φգ

2
|

|
𝑥ϵբ

− 𝑥ϵգ

2
|, |

𝑦ϵբ
− 𝑦ϵգ

2
|

|
𝑥ϯբ

− 𝑥ϯգ

2
|, |

𝑦ϯբ
− 𝑦ϯգ

2
|

|
𝑥Κբ

− 𝑥Κգ

2
|, |

𝑦Κբ
− 𝑦Κգ

2
|⎠

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎞

=

⎝

⎜⎜
⎜⎛

226 ± 9,
2636 ± 8,

3084.5 ± 5.5,
3180 ± 5,

0 ± 0
1634.5 ± 3.5
2098.5 ± 17.5

4000 ± 0 ⎠

⎟⎟
⎟⎞ 

1

2

3

4

1
2

3 4

AB

A B

Sobel Operator GIMP

A

B

A

B
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The next step is to transform these 4 sets of coordinates into the wrap angle, detailed below: 

Figure 6. A diagram showing the derivation of the function through a series of trigonometric identities.3 

Substituting the values, the wrap angle could be determined: 

𝜃 = tan−φ 2636 − 226

1634.5 − 0
+ tan−φ 4000 − 2098.5

3180 − 3084.5
−

𝜋

2
= 0.924659… ≈ 0.925 rad(ϯ֎ӳցӳ) (9) 

Suppose the function 𝑓(𝑥φ, 𝑦φ,… ) outputs the wrap angle given the 4 sets of coordinates, then the 
propagation of error formula can be used to find the uncertainty in angle, ∆𝜃 (Ku): 

∆𝜃 = ఌంগ
𝜕𝑓

𝜕𝑥ֆ

∆𝑥ֆঘ
ϵ

+ গ
𝜕𝑓

𝜕𝑦ֆ

∆𝑦ֆঘ
ϵΚ

ֆ=φ

(10) 

Simplified versions of Equation 10 for different values of 𝜃 could be found in the Appendix. 
Substituting in the values: 

∆𝜃 = ఌ
(1634.5 − 0)ϵ(8ϵ + 9ϵ) + (2636 − 226)ϵ(0ϵ + 3.5ϵ)

((2636 − 226)ϵ + (1634.5 − 0)ϵ)ϵ
+

(3180 − 3084.5)ϵ(0ϵ + 17.5ϵ) + (4000 − 2098.5)ϵ(5ϵ + 5.5ϵ)

((4000 − 2098.5)ϵ + (3180 − 3084.5)ϵ)ϵ
 

∆𝜃 = 0.00456995 … ≈ 0.005 rad(φտӳ֋ӳ) (11) 

The calculation of the holding force starts with the extraction of the holding forces in each trial:  

Figure 7. A diagram showing the process of data extraction. 

The final holding force and its uncertainty is then calculated: 
𝑇փ֊ևտՒՆ՝

= maxॕ𝑇փ֊ևտȯ
+ ∆𝑇փ֊ևտȯ

, 𝑇փ֊ևտɞ
+ ∆𝑇փ֊ևտɞ

, 𝑇փ֊ևտɘ
+ ∆𝑇փ֊ևտɘ

ॖ + 0.01 = 6.65N  
𝑇փ֊ևտՒՆ՝

= minॕ𝑇փ֊ևտȯ
− ∆𝑇փ֊ևտȯ

, 𝑇փ֊և ɞ
− ∆𝑇փ֊ևտɞ

, 𝑇փ֊և ɘ
− ∆𝑇փ֊ևտɘ

ॖ − 0.01 = 6.55N 

𝑇փ֊ևտ =
𝑇փ֊ևտՒՆ՝

+ 𝑇փ֊և ՒՎՓ

2
±

𝑇փ֊ևտՒՆ՝
− 𝑇փ֊ևտՒՎՓ

2
= (6.60 ± 0.05) N (12) 

 
3 Note that the function that maps the 4 sets of coordinates to angles are case-specific and may vary for different trials. For a detailed 
list of function definitions, please refer to the Appendix. 

By definition,

Since internal angles sum up to about a point,

Because the sum of internal angles in a 
quadrilateral is , and that the angle of a tangent 
line towards the centre of a circle is , therefore,

A photograph of a side view of the setup
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In order to better represent the data on a graph and to ease calculations, the relationship must be 
linearised. It can be achieved by taking the natural logarithm on both sides of the Capstan Equation:  

𝑇փ֊ևտ = 𝑇և֊ռտ𝑒
−ᇋ՘𝜃 

ln 𝑇փ֊ևտ = ln𝑇և֊ռտ + ln 𝑒−ᇋ՘𝜃 
ln 𝑇փ֊ևտ = −𝜇֎𝜃 + ln 𝑇և֊ռտ 
−ln𝑇փ֊ևտ = 𝜇֎𝜃 − ln 𝑇և֊ռտ (13) 

From the new relationship above, suppose the function 𝑔(𝑇փ֊ևտ) = −ln 𝑇փ֊ևտ, then the new holding 
force is −ln 6.60 ≈ −1.887 𝑁 . The uncertainty could be determined by using the propagation of 
error formula: 

∆ ln𝑇փ֊ևտ = ఌগ
𝜕𝑔

𝜕𝑇փ֊ևտ

Δ𝑇փ֊ևտঘ
ϵ

= ఌগ−
1

𝑇փ֊ևտ

Δ𝑇փ֊ևտঘ
ϵ

 

∆ln 𝑇փ֊ևտ =
Δ𝑇փ֊ևտ

𝑇փ֊և

=
0.05

6.60
= 0.00757575… ≈ 0.008 N (14) 

Graph 

Figure 8. A linearised plot of the loading force (− ln 𝑇և֊ռտ) against wrap angle (𝜃). 

Note: The greatest uncertainty in wrap angle is only ±0.006 radians and considering the horizontal 
range of the graph (6.283 radians), it only takes up 0.095% of the space. Because this magnitude is 
too small to be observed, the horizontal error bars are not included. 

It has been observed that there is an anomaly at 𝜃 = 4.139 rad, where the loading force appears to 
be lower than usual. If the string is not parallel to the force sensor, it may neglect the horizontal or 
vertical force component (Precaution 1). There may also be a possibility that the string had touched 
teach other, causing yarn-to-yarn friction, reducing the loading force. Regarding the choice of line 
of best fit, although the gradient appears to approach zero on both sides, suggesting a suit for a 
cubic polynomial fit, the small magnitude of the error bars means that the only suitable line of best 
fit that fits appropriately within the error bars is linear. 
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Conclusion 

The mathematical relationship between the holding force and the wrap angle can be best described 
as negative logarithmic. When Equation 13 is being compared to the slope-intercept form (𝑦 = 𝑚𝑥 +

𝑐, where 𝑚 is the slope and 𝑐 is the y-intercept), then the slope of the graph denotes the coefficient 
of friction (𝜇֎), while the y-intercept denotes − ln𝑇և֊ռտ. 

From the graph, the minimum gradient is 0.1733, while the maximum gradient is 0.2045, therefore 
the coefficient of friction is 0.19 ± 0.01. Similarly, the y-intercept ranges between: 

−2.1430 < − ln 𝑇և֊ռտ < −2.0395 

𝑒ϵӳЈϯνΘ < 𝑇և֊ռտ < 𝑒ϵӳφΚϯЈ 

7.69 < 𝑇և֊ռտ < 8.52 (15) 
therefore, the loading force is (8.1 ± 0.4) N. A test that determines the true value of the loading 
force has been performed. The slotted mass is suspended vertically by the force sensor, measuring 
the change in loading force over a 10 second interval. By applying half-range estimation, the true 
loading force was determined to be (7.88 ± 0.03) N, meaning the loading force previously determined 
was overestimated by 0.23N. By vertically translating the graph upwards by the natural logarithm 
of the true loading force, which is (2.064 ± 0.004) N, the range of y-intercepts formed by the 
maximum and minimum gradient lines would cover the origin, therefore the linearised relationship 
would be directly proportional if 𝑇և֊ռտ = 0, meaning an insignificant systematic error. 

Comparison with the literature 

In the Capstan Equation (𝑇փ֊ևտ = 𝑇և֊ռտ𝑒
−ᇋ՘𝜃), the static coefficient of friction (𝜇֎) is the only 

constant, therefore in order to check if the results are reasonable, the literature values of it have 
been extensively researched. A full list of the values and conditions can be found in the Appendix. 

Figure 9. A linearised plot of the loading force (− ln 𝑇և֊ռտ) against wrap angle (𝜃), including the predicted 
loading force from various researchers, based on their literature values and respective uncertainties.  

Qualitatively, the experimental slope matches the general trend of the researchers, where the 
coefficient of friction is positive. Because it has been observed that the coefficient of friction varies 
largely between the researchers, a large amount of literature values of 𝜇֎ have been collected. In 
fact, since the static coefficient of friction is based on the type of two contacting materials, slight 
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differences in the physical properties of either the string or the capstan can cause the value to change 
by a huge magnitude. In other words, there is not a universal constant coefficient of friction that 
governs all material types. Therefore, although only two (Das et al., Shahzad et al.) literature values 
lie within the region enclosed by the maximum and minimum gradient line, it is safe to assume that 
the experimental data is reasonable. 

However, it is still noticeable that a majority of the researcher’s value of coefficient of friction (7 of 
8) are above the experimental value. There are a number of factors that can cause this, including 
environmental aspects and string properties. On the microscopic level, as the relative humidity is 
increased, water molecules adhere to the cellulose fibres of the cotton yarns, increasing ruggedness 
and hence increasing the coefficient of friction (Kenins; Besler & Taylor). In fact, a majority of the 
researcher’s experiments are conducted under the internationally agreed ASTM D1776 standard, at 
65% relative humidity. However, the relative humidity during the experiment was only 42%, 
explaining why the coefficient of friction might have been lower than the literature. Additionally, 
the string used in the experiment is composed of two smaller threads, each twisted towards each 
other to give better tensile strength. When the number of twists per unit length is increased, threads 
are closely interlocked, making it hard for frictional forces to move the individual threads, hence a 
higher coefficient of friction (Subramaniam). In fact, Subramaniam used yarn of 8.75 to 12.5 
twists cm−φ, but by analysing the yarn used in the experiment, it ranged from roughly 1 to 2  
twists cm−φ, explaining why the coefficient of friction might be lower than the researcher’s values. 

Sources of error and Limitations 

Source of error Significance Improvements 

The holding force 
is not the 

minimum force 
needed to cause 

the system to not 
slip. 

Very significant in affecting the 
random error. 

When the lifting jack is suddenly 
removed, or no longer in contact with 

the slotted mass, it begins to accelerate 
downwards. Because of kinetic friction, 
the kinetic energy of the slotted mass 

decreases and comes to a halt. 
However, because the rebounding 

spring force is less than the maximum 
static friction, the string does not 
move and is held at an extended 

position, causing the tension to be 
higher than normal. 

There are two ways to minimise this 
problem, to reduce the rate of change in 
tension over time by placing a sponge 
between the lifting jack and the mass. 

Another approach to this methodological 
issue is to attach a motor to the capstan. 

The motor will then start to spin at a very 
slow speed in the direction of the holding 
force. As this happens, the frictional force 
begins to rise, causing the holding force to 
decrease. As this frictional force rises past 

the maximum static friction, dynamic 
friction occurs, causing the slotted mass to 

drop back to its initial position. This 
causes a sharp increase in the holding 

force, and therefore the absolute minimum 
loading force could then be determined.   

Measured loading 
force is sometimes 

below the true 
loading force. 

As a continuation of the above, during 
some of the trials when the slotted 

mass is being lowered, the lifting jack 
can get stuck at a specific position, 
causing “stuttering” on the holding 

Using a motorised lifting jack will ensure 
the tension is gradually applied. However, 
the best option will be to use the suggested 

new experimental method above, which 
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force, and because of the effect 
described above, the final holding force 

will increase. 

essentially eliminates the need to account 
for it. 

The loading force 
appears to 

decrease as time 
passes during each 
individual trial. 

Significant in affecting the random 
error. Because the string is elastic, it 

has the tendency to return to its 
equilibrium position. Microscopically, 

as threads lose contact with the 
capstan, the frictional force is 

decreased, hence the rebounding force 
is increased.  

Since the force appears to reach a stable 
value, extending the data collection time to 

1 minute and taking the last 10 seconds 
will reduce the uncertainty. To minimise 

the rebounding force, another string should 
be chosen with a higher stiffness, for 

example, braided strings. 

The loading force 
appears to always 
increase between 

trials. 

Significant in affecting the random 
error. In almost every trial, consecutive 

trials show that the loading force 
increases.  

Replace the string for each trial to ensure 
that the quality of the string is consistent. 
Also ensure that the slotted mass retains 
its rotational position, so that the twist 

factor is kept constant.  

Improper Angles 
in capstan and 

force sensor 

Significant in affecting the random 
error. If the string is tilted, it may 

neglect some force components, leading 
to wrong measurements. 

Use a protractor to properly angle and 
position the instruments. Capture a birds-
eye view of the setup to ensure that the 

ensure the angles are appropriate as well. 

The coefficient of 
friction of the 
string is not 

uniform on the 
capstan. 

Insignificant in affecting the random 
error. Because of the nature of two-ply 
strings, some parts of the string may 

experience a larger normal force. 

Use strings with a higher twist factor, 
meaning threads will be closer to each 

other and hence better evenly distribute 
the normal force. 

AKs`Qp2K2lig�lNg1ti2lbaQlg

Despite major changes in experimental design and proposals of multiple improvements above, that 
are aimed at reducing as many possible sources of errors as possible, there are still some violations 
to the assumptions of the Capstan Equation that are currently that are hard to avoid and in partially 
out of the scope of the current study. As an example, according to Gupta et al., conventional cotton 
yarns and woven fabrics are known to not obey the Amonton’s Classical Law of Friction (Equation 
6), hence rendering the traditional Capstan Equation inaccurate. Instead, the group has arrived at 
a modified relationship: 

ԉփ֊ևտ�ԉև֊ռտԔ
ᇆռ	 ֍

յՑՔՆՉ

ȯȎՓ

	��
 

Where r is the capstan radius, n is some constant (n for textile materials range between 0.8 and 
0.96), and a is some constant that approaches ᅷ֎ when n approaches 1. 

According to the experimental results of Gupta et al., this equation causes an average of 10% 
discrepancy between the actual result. Because of this, small errors in the independent variable can 
cause the dependent variable to not obey the proposed relationship. In order to accurately study 
this relationship, the number of trials should be increased and the range of independent variable, ᅲ,  
should be extended beyond ߨ� to increase the fidelity of the data.� g
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h�#H2gR: A list of functions that processes the four sets of coordinates to angles and its relevant uncertainty. 
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Das et al. �����਻����� ԉև֊ռտ�����ԃ 

Kilic and Sülar �����਻����� ԉև֊ռտ���ԃ, twist factor=4.0 
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Table 2: A list of the literature values of static coefficient of friction obtained from various researchers and 
their respective test conditions. 




