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1 Introduction 

Aviation has always been my strongest passion since I was young. I would occasionally visit 

the airport for planespotting, sit at the edge of the runway and admire every aircraft that 

whizzed past my head. I am always fascinated and impressed by the sheer amount of 

engineering required to iteratively refine and improve upon aircraft designs, which has evolved 

planes in the modern era to be significantly safer to fly, much more fuel efficient and rapid. 

My dream as an aspiring aerospace engineer is to contribute to the aviation community, to 

make our transport systems more efficient by developing better aircraft designs. 

Historically, the fuselage of early aircraft such as the McDonnell Douglas DC-3 (developed in 

the 1940s), had square-shaped cabins to maximise comfort. However, as the world experienced 

a massive surge in the need to carry more passengers and to fly faster at an economically 

viable way, engineers have realised that square cabins were highly inefficient. As a result, 

modern aircraft designs such as the Airbus A350-900 (developed in the 2010s) have 

significantly different aircraft characteristics, such as circular cabins, curved wing surfaces and 

blended winglets. As a keen aviation enthusiast, I keep a collection of different aircraft models:  

Figure 1. The newest addition to my collection of aircraft models, the Airbus A350-900. 

Since I often find myself glancing at the models and admiring its complex geometry, I 

wondered: how do aircraft manufacturers trade between the aerodynamic efficiency and the 

size of the aircraft? For example, if the width of the fuselage is increased, the aircraft will be 

able to carry more passengers and generate greater profit. But if the width is excessively large, 

this will cause an increase in aerodynamic drag and cause greater fuel expenditures. Is there a 

feasible method to compute the equilibrium at which the friction is minimised? 
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I therefore wanted to know whether I could use integration which I learnt during my lessons, 

to accurately calculate the volume and surface area of an aircraft, and most importantly 

optimise the dimensions of the aircraft while minimising the aerodynamic drag of the aircraft. 

In the following section, I will discuss the various concepts required to perform the 

investigation. 

2 Aim and Approach 

Figure 2. A flowchart of the general process of my investigation and the final aims. 

2.1 Solid of revolution 

The object I will be investigating is the fuselage, which is the main body of the aircraft. 

Figure 3. The 2D orthographic projections of the A350-900 fuselage. The 𝑥, 𝑦 and 𝑧 axes are aligned 
along the length, width, and height of the fuselage respectively. 

Upon a first inspection of the geometry of the fuselage, the top view indicates that there is a 

symmetry along the 𝑥-axis, and that the frontal area forms a circle. In order to represent the 

solid mathematically, I initially believed that I could represent the fuselage by a solid of 

revolution, which is an object formed by an infinite number of circular disks of radius 𝑅(𝑥), 

of a small thickness of Δ𝑥, as represented by below: 
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Figure 4. Representation of the fuselage as a solid of revolution, enclosed by the curve 𝑅(𝑥) and 
rotated along the 𝑥-axis.1 

However, I began to realise that it is problematic to assume the fuselage as a solid of revolution, 

because there is no rotational symmetry along the 𝑧-axis, as depicted below: 

Figure 5. The issues of assuming the fuselage as a solid of revolution along the 𝑥-axis. 

As shown above, because the fuselage is asymmetric, this means that certain parts of the 

fuselage will be under- and over-represented, introducing large errors from the true result. To 

solve this issue, I will illustrate in the following section how I developed my own new method. 

2.2 Adoption of new method for representing the fuselage 

Figure 6. Depiction of the proposed mathematical representation of the fuselage. 

 
1 Unless specified otherwise, all diagrams are created by the candidate with the use of Python scripts, available in the Appendix. 
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In this new representation, I will be assuming that the fuselage is composed of an infinite 

number of circular disks of radius 𝑅(𝑥), with small thickness Δ𝑥, centred along the curve 

𝐶(𝑥), where 𝐶(𝑥) is the midpoint between the top curve 𝑇 (𝑥) and bottom curve 𝐵(𝑥): 

𝐶(𝑥) =
𝑇(𝑥) + 𝐵(𝑥)

2
(1) 

The radius of each disk is expressed by the distance between the centre and the top curve: 

𝑅(𝑥) = 𝑇(𝑥) − 𝐶(𝑥) =
𝑇(𝑥) − 𝐵(𝑥)

2
(2) 

By representing the fuselage as discs centred along the camber line 𝐶(𝑥) of the fuselage instead 

of the 𝑥-axis, the issue of asymmetricity as demonstrated in Section 2.1 is eliminated, providing 

a much more accurate representation than the solid of representation. In the following section, 

I will be deriving the formulae for the volume and the surface area of the fuselage. 

2.3 Volume of the fuselage 

The volume of the fuselage can be calculated by the sum of the area of all circular disks (𝜋𝑅ϵ) 

multiplied by the width Δ𝑥 between 𝑥 = 0 and 𝑥 = 𝑏: 

𝑉 = lim
း֓→Ј

ం 𝐴(𝑥ք)Δ𝑥
ք

= lim
း֓→Ј

ం 𝜋ॕ𝑅(𝑥ք)ॖ
ϵ
Δ𝑥

ք
= 𝜋 ௷ ॕ𝑅(𝑥)ॖ

ϵ
d𝑥

ս

Ј

(3) 

2.4 Surface area of the fuselage  

Figure 7. The calculation of the surface area of the fuselage. 

With reference to Figure 7.1, the surface area of the entire fuselage can be calculated by the 

sum of the surface areas of all circular disks: 
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𝐴 = lim
း֓→Ј
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ం 2𝜋𝑅(𝑥ք)Δ𝐿յ −
2𝜋𝑅(𝑥ք)(Δ𝐿յ − Δ𝐿գ)
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(4) 

Now that the method of representing the fuselage is established, the following section will aim 

to find the volume and the surface area of the fuselage by applying Equations (3) and (4). 

3 Modelling the aircraft fuselage 

To calculate the volume and the surf ace area of the fuselage, the top curve, 𝑇 (𝑥) and the 

bottom curve, 𝐵(𝑥) must first be found. To increase the correctness of the results, I will be 

comparing the results obtained from two separate methods by its quality, being: 

1. Simple quartic regression, 
2. Piecewise regression using cubic splines. 

To obtain the data points required for the regression, I first processed the side view of the 

fuselage through a Canny Edge detector, producing a sharp outline of the image. The 

coordinates of each pixel are then extracted if its luminance exceeds a certain threshold. After 

aligning and rescaling the coordinates to match the real-life length of the aircraft of 65.27 m, 

13,403 data points representing each boundary are automatically extracted from the image:  

Figure 8. A zoomed-in image of the individual data points after the pixel extraction. 
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The advantage of automating this process is to reduce the human errors and bias, such as 

accidentally mismarking the location of the edges. Also, because of the large amount of data 

points, this allows will allow me to regress the curves with a greater degree of confidence. 

3.1 Simple quartic regression 

The first method I will be using to obtain the boundary curves is by fitting a quartic 

polynomial. The reason I chose a polynomial with order 4 is because it is an even-degree 

polynomial, which as 𝑥 → ±∞, 𝑓(𝑥) tends to head off in the same direction. Considering that 

the top and bottom boundaries of the aircraft also tend to head off in the same direction, this 

choice is justified. The quartic polynomial is given by:  

𝑓(𝑥) = 𝛽Ј + 𝛽φ𝑥 + 𝛽ϵ𝑥
ϵ + 𝛽ϯ𝑥

ϯ + 𝛽Κ𝑥
Κ (5) 

, where 𝛽Ј, 𝛽φ, 𝛽ϵ, 𝛽ϯ, 𝛽Κ are unknown coefficients to be found and 𝑥 is the position along the 

𝑥-axis. To find these coefficients, given a list of coordinates (𝑥։, 𝑦։), the following matrix 

equation is to be solved: 

⎣

⎢
⎡

𝑥Ј
Ј 𝑥Ј 𝑥Ј

ֈ−φ

𝑥φ
Ј ⋱ 𝑥φ
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⎥
⎤

⎣

⎢
⎢
⎢
⎡
𝛽Ј
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𝛽ϵ

𝛽ϯ

𝛽Κ⎦

⎥
⎥
⎥
⎤

= ঢ়

𝑦Ј

⋮
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 (6) 

where 𝛽 are the coefficients to be found, 𝑛 is the 𝑛֏փ data point, 𝑚 is the degree of the 

polynomial equation, while minimising the residual sum of squares (RSS): 

𝑅𝑆𝑆 = ం(𝑦ք − 𝑓(𝑥ք))
ϵ

։

ք=Ј

= ం५𝑦ք − (𝛽Ј + 𝛽φ𝑥ք + 𝛽ϵ𝑥ք
ϵ + 𝛽ϯ𝑥ք

ϯ + 𝛽Κ𝑥ք
Κ)६

ϵ
։

ք=Ј

(7) 

, where 𝑦ք is the 𝑖Ϭ predicted value. By finding the global minimum point of Equation (7), the 

optimum coefficients 𝛽 can subsequently be found. However, since are 13,403 data points, the 

matrix in Equation (6) will be too complex to be feasibly solved by hand. Therefore, I decided 

to use the use the NumPy Python library, which automatically computes the equations above. 

The top and bottom curves of the fuselage is found to be2: 

𝑇(𝑥) = 2.886 + 0.4926𝑥 − 0.02484𝑥ϵ + 0.0005090𝑥ϯ − 3.625E-6𝑥Κ (8) 

𝐵(𝑥) = 0.9724 − 0.07021𝑥 + 0.002115𝑥ϵ − 4.355E-5𝑥ϯ + 6.466E-7𝑥Κ (9) 

 
2 Figures will be rounded to the nearest 4 significant figures to preserve precision, and expressed in the E notation whenever 
numbers are too small or too large. 
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Below is an overlay of the top and bottom curves, 𝑇 (𝑥) and 𝐵(𝑥) on the original image: 

Figure 9. The top and bottom curves obtained using quartic regression. 

To visualise the results in 3D, I constructed the following set of parametric equations that 

describes the surface: 

𝑥(𝑡, 𝜃) = 𝑡

𝑦(𝑡, 𝜃) = 𝑅(𝑡)cos(𝜃)

𝑧(𝑡, 𝜃) = 𝑅(𝑡)sin(𝜃) + 𝐶(𝑡)

অ
0 < 𝜃 < 2𝜋,

0 < 𝑡 < 65.27
আ (10) 

In Equation (10), as 𝜃 is being varied from 0 to 2𝜋, this draws a circle with radius 𝑅(𝑥) and 

at 𝐶(𝑥) units above the 𝑧-axis. Plotting this equation gives the following visualisation:  

Figure 10. A 3D visualisation of the solid formed using simple quartic regression. 

To calculate the volume of the solid, the radius is first calculated using Equation (2): 

𝑅(𝑥) = 𝑇(𝑥) − 𝐵(𝑥) 

𝑅(𝑥) = 0.9571 + 0.2814𝑥 − 0.01348𝑥ϵ + 0.0002763𝑥ϯ − 2.136E-6𝑥Κ (11) 
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The volume can be determined by substituting Equation (11) into Equation (3): 

𝑉 = 𝜋 ௷ ॕ𝑅(𝑥)ॖ
ϵ
d𝑥

ս

Ј

 

𝑉 = 𝜋 ௷ (0.9571 + 0.2814𝑥 − 0.01348𝑥ϵ + 0.0002763𝑥ϯ − 2.136E-6𝑥Κ)ϵ d𝑥
ϩΘӳϵϨ

Ј

 

By expanding ॕ𝑅(𝑥)ॖ
ϵ and integrating each term and evaluating: 

𝑉 = 𝜋 ௷
0.9161 + 0.5387𝑥 + 0.05338𝑥ϵ − 0.007055𝑥ϯ + 0.00033306𝑥Κ

−8.649E-6𝑥Θ + 1.339E-7𝑥ϩ − 1.180E-9𝑥Ϩ + 4.562E-12𝑥΅
d𝑥

ϩΘӳϵϨ

Ј

 

𝑉 = 𝜋 ઊ
0.9161𝑥 + 0.2693𝑥ϵ + 0.01779𝑥ϯ − 0.001764𝑥Κ + 6.661E-5𝑥Θ

−1.441E-6𝑥ϩ + 1.913E-8𝑥Ϩ − 1.475E-10𝑥΅ + 5.069E-13𝑥ν
ઊ
Ј

ϩΘӳϵϨ

 

𝑉 = 1341.6380637389… 

𝑉 = 1341.64 mϯ
(ϵտӳӳ) (12) 

The surface area can be determined by substituting Equations (8) and (9) into Equation (4): 

𝐴 = 𝜋 ௷ 𝑅(𝑥)

⎝

⎜⎛ఌ1 + গ
d𝑇

d𝑥
ঘ

ϵ

+ ఌ1 + গ
d𝐵

d𝑥
ঘ

ϵ

⎠

⎟⎞d𝑥
ս

Ј

 

𝐴 = 𝜋 ௷

⎝

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎛

0.9571 + 0.2814𝑥 − 0.01348𝑥ϵ + 0.0002763𝑥ϯ − 0.000002136𝑥Κ

(ఌ1 + গ
d(2.886 + 0.4926𝑥 − 0.02484𝑥ϵ + 0.0005090𝑥ϯ − 3.625E-6𝑥Κ)

d𝑥
ঘ

ϵ

+

ఌ1 + গ
d(0.9724 − 0.07021𝑥 + 0.002115𝑥ϵ − 4.355E-5𝑥ϯ + 6.466E-7𝑥Κ)

d𝑥
ঘ

ϵ

)
⎠

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎞

d𝑥
ϩΘӳϵϨ

Ј

 

𝐴 = 𝜋 ௷

⎝

⎜⎜
⎛

0.9571 + 0.2814𝑥 − 0.01348𝑥ϵ + 0.0002763𝑥ϯ − 0.000002136𝑥Κ

(ఉ1 + (0.4926 + 0.04968𝑥 + 0.001527𝑥ϵ − 1.450E-5𝑥ϯ)ϵ +

ఉ1 + (0.07021 + 0.004231𝑥 − 0.0001307𝑥ϵ + 2.586𝑥ϯ)ϵ) ⎠

⎟⎟
⎞

d𝑥
ϩΘӳϵϨ

Ј

 

Since the integral above could not be computed analytically, 𝐴 is evaluated using a graphical 

calculator: 

𝐴 = 1011.6973136310… 

𝐴 = 1011.69 mϵ
(ϵտӳӳ) (13) 

Therefore, the volume of the fuselage is 1341.64 mϯ and the surface area is 1011.69 mϵ. 
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While the volume and the surface area of fuselage has been successfully found above, I realised 

that an apparent weakness for the simple quartic regression is that it is highly susceptible to 

issues such as underfitting and overfitting, as demonstrated below: 

Figure 12. Issues of underfitting and overfitting occurs when an incorrect order of polynomial is used. 

In this specific case, where a quartic polynomial is used for regression: 

Figure 11. Demonstration the misrepresentation of the fuselage geometry at several locations. 

There are multiple instances when the quartic polynomial is unable to resolve the minute 

details of the sharp edges, indicating that it is suffering with the issue of underfitting and 

overgeneralisation. While I could easily mitigate this by increasing the number of degrees, such 

that more detail can be captured within the polynomial, I ran into the risk of experiencing 

overfitting. Therefore, I wondered: is there an optimum number of degrees such that the 

maximum detail is captured, while not being overly noisy and thus impacting the accuracy? 

x x

yy

Underfitting
Regression curve not representative of data

Overfitting
Regression curve results in more noise than input

Occurs for low-order polynomials Occurs for high-order polynomials
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Therefore, in the following section, I will attempt to explore a different method of calculating 

the volume and surface area of the fuselage, using the technique of piecewise regression with 

cubic splines, which is expected to have less issues of underfitting and overfitting. 

3.2 Piecewise regression using cubic splines 

Noticing that the fuselage contains an appreciable number of sharp edges, particularly the 

nose cone, I will be using cubic splines to perform a piecewise regression on the data. In this 

this new method, instead of representing the entire length of the surface with a single curve, 

the surface is first subdivided into equal intervals of length of 𝐿, then a simple cubic regression 

is performed for each interval individually and independently, forming the following function: 

𝑓(𝑥) =

⎩
⎨

⎧𝛽ЈЈ

+ 𝛽φЈ
𝑥 + 𝛽ϵЈ

𝑥ϵ + 𝛽ϯЈ
𝑥ϯ {0 < 𝑥 < 𝐿}

⋮ ⋮
𝛽Јֆ

+ 𝛽φֆ
𝑥 + 𝛽ϵֆ

𝑥ϵ + 𝛽ϯֆ
𝑥ϯ {𝐿𝑘 < 𝑥 < 𝐿(𝑘 + 1)}

(14) 

, where 𝛽Ј, 𝛽φ, 𝛽ϵ, 𝛽ϯ are unknown coefficients to be found, 𝑥 is the position along the 𝑥-axis 

, 𝑘 is the 𝑘Ϭ interval and 𝐿 is the length of each interval. According to Silverman (1985) and 

Wand (2000), because each regression is treated independently from each interval, there is no 

guarantee that the function is continuous and differentiable, and hence, it is necessary to 

impose several constraints on 𝑓(𝑥):  

Figure 12. Demonstrations of discontinuities in 𝑓(𝑥) when 𝑓ֆ(𝑏) ≠ 𝑓ֆ+φ(𝑏) and 𝑓ֆ
(𝑏) ≠ 𝑓ֆ+φ

(𝑏). 

Here, by constraining 𝑓ֆ(𝑏) = 𝑓ֆ+φ(𝑏), this eliminates the issue of 𝑓(𝑥) being discontinuous at 

the edge of each interval 𝑘, and by also constraining 𝑓ֆ
(𝑏) ≠ 𝑓ֆ+φ

(𝑏), this ensures that the 

overall curve is smooth (Hall and Opsomer, 2005). 
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In combination with the constraints above, while minimising the residual sum of squares: 

𝑅𝑆𝑆 = ంॕ𝑦ք − 𝑓(𝑥ք)ॖ
ϵ

։

ք=Ј

(15) 

, where 𝑦ք is the 𝑖Ϭ predicted value and 𝑓(𝑥ք) is Equation (14) evaluated at the 𝑖Ϭ 𝑥-value. 

By finding the global minimum of Equation (15), all sets of the optimum coefficients 𝛽ֆ for all 

𝑘 intervals can be found. However, as Perperoglou et al. (2019) suggests, because this approach 

is an iterative process that uses many complex computational algorithms to minimise Equation 

(15), there is currently no feasible method to compute 𝛽 by hand. Therefore, I decided to use 

the statsmodels and patsy Python libraries, which automatically computes the coefficients: 

𝑇 (𝑥) = 
1.911 + 1.342𝑥 − 0.5741𝑥ϵ + 0.1933𝑥ϯ

⋮
2.292E+4 − 1070𝑥 + 16.66𝑥ϵ − 0.08646𝑥ϯ

  
{0 < 𝑥 < 1.004}

⋮
{64.25 < 𝑥 < 65.26}

(16) 

𝐵(𝑥) = 
1.841 − 1.482𝑥 + 0.9862𝑥ϵ − 0.2932𝑥ϯ

⋮
−2.503E+4 + 1167𝑥 − 18.12𝑥ϵ + 0.09382𝑥ϯ

  
{0 < 𝑥 < 1.004}

⋮
{64.25 < 𝑥 < 65.26}

(17) 

Below is an overlay of the top and bottom curves, 𝑇 (𝑥) and 𝐵(𝑥) on the original image:  

Figure 13. The top and bottom curves obtained using piecewise cubic regression and its intervals. 
Applying the set of parametric equations in Equation (10), a 3D visualisation is generated:  

Figure 14. A 3D visualisation of the solid formed using piecewise cubic regression. 
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To calculate the volume and surface area of the solid, I will begin by first obtaining the radius 

curve, which is calculated by substituting Equations (16) and (17) into Equation (2): 

𝑅(𝑥) =
𝑇(𝑥) − 𝐵(𝑥)

2
 

𝑅(𝑥) = 
0.03532 + 1.412𝑥 − 0.7802𝑥ϵ + 0.2432𝑥ϯ

⋮
−2.398E+4 + 1118𝑥 − 17.39𝑥ϵ + 0.09014𝑥ϯ

  
{0 < 𝑥 < 1.004}

⋮
{64.25 < 𝑥 < 65.26}

(18) 

The volume of the solid can be then determined by from Equation (3): 

𝑉 = 𝜋 ௷ ॕ𝑅(𝑥)ॖ
ϵ
d𝑥

ս

Ј

 

Since 𝑅(𝑥) is a piecewise function, the total volume is calculated by summing up each 

individual volumes for each interval 𝑖: 

𝑉 = 𝜋 ం௷ ॕ𝑅ք(𝑥)ॖ
ϵ

(ք+φ)խ

քխ

d𝑥
ֆ

ք=Ј

(19) 

, where 𝐿 is the interval length and 𝑅ք(𝑥) is the 𝑖Ϭ function of 𝑅(𝑥), which lies between 𝑖𝐿 <

𝑥 < (𝑖 + 1)𝐿. While the above can certainly be computed individually, this process is very 

time-consuming. I have therefore created a method which collapses the set of piecewise 

functions, 𝑅(𝑥) into a single function, 𝑅(𝑙). Since all intervals are of the same length 𝐿, each 

radius function 𝑅ք(𝑥) can be translated towards the left, and aggregated vertically:  

Figure 15. The additive property of the integrals of piecewise functions leading to a simplified 
method of computing volume. 

By performing the operations as depicted in Figure 15, after collapsing the piecewise functions, 

Equation (19) can be simplified to:  

𝑉 = 𝜋 ௷ ంॕ𝑅ք(𝑥 + 𝑖𝐿)ॖ
ϵ
d𝑥

ֆ

ք=Ј

խ

Ј

(20) 

x

R(x)

0 L 2L 3L
l

R(l)

0 L

Translate left by L units

Translate left by 2L units

Re-alignment of each 
piecewise function to 

stack vertically 
between 0 and L

𝑉 = 𝜋 ௷ ॕ𝑅0(𝑥)ॖ
2
 d𝑥

𝐿

0

+ 𝜋 ௷ ॕ𝑅1(𝑥)ॖ
2
 d𝑥

2𝐿

𝐿

+ 𝜋 ௷ ॕ𝑅2(𝑥)ॖ
2
 d𝑥

3𝐿

2𝐿

 

𝑅0(𝑥) 𝑅1(𝑥) 𝑅2(𝑥) 

𝑅0(𝑥) 

𝑅2(𝑥 + 2𝐿) 

𝑅1(𝑥 + 𝐿) 

𝑉 = 𝜋 ௷ ॕ𝑅0(𝑥)ॖ
2
+ ॕ𝑅1(𝑥 + 𝐿)ॖ

2
+ (𝑅2(𝑥 + 2𝐿))2

𝐿

0

d𝑥 
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The summation symbol can be evaluated by substituting (18) into (20): 

𝑉 = 𝜋 ௷

⎝

⎜⎜
⎜⎜
⎛

(0.03532 + 1.412𝑥 − 0.7802𝑥ϵ + 0.2432𝑥ϯ)ϵ +

(0.2605 + 0.7391(𝑥 + 𝐿) − 0.1101(𝑥 + 𝐿)ϵ + 0.02076(𝑥 + 𝐿)ϯ)ϵ +
⋮

(−2.398E+4 + 1118(𝑥 + 64𝐿) − 17.39(𝑥 + 64𝐿)ϵ + 0.09014(𝑥 + 64𝐿)ϯ)ϵ⎠

⎟⎟
⎟⎟
⎞

d𝑥
խ

Ј

 

𝑉 = 𝜋 ௷

⎝

⎜⎜
⎜⎜
⎛

(0.03532 + 1.412𝑥 − 0.7802𝑥ϵ + 0.2432𝑥ϯ)ϵ +

(0.9126 + 0.5809𝑥 − 0.04753𝑥ϵ + 0.02076xϯ)ϵ +
⋮

(0.5117 − 0.1688𝑥 − 0.01317𝑥ϵ − 0.09014𝑥ϯ)ϵ ⎠

⎟⎟
⎟⎟
⎞

d𝑥
φӳЈЈΚ

Ј

 

𝑉 = 𝜋 ௷

⎝

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎛

0.001247 + 0.09973𝑥 + 1.9383𝑥ϵ

−2.1858𝑥ϯ + 1.2955𝑥Κ − 0.3796𝑥Θ + 0.05917𝑥ϩ
+

0.8329 + 1.060𝑥 + 0.2507𝑥ϵ

−0.01732𝑥ϯ + 0.02638𝑥Κ − 0.001974𝑥Θ + 0.0004311𝑥ϩ
+

⋮
0.2619 − 0.1728𝑥 + 0.04197𝑥ϵ

−0.09670𝑥ϯ + 0.03061𝑥Κ − 0.002374𝑥Θ0.008126𝑥ϩ ⎠

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎞

d𝑥
φӳЈЈΚ

Ј

 

𝑉 = 𝜋 ௷ 428.5 + 0.06012𝑥 + 1.4770𝑥ϵ + 2.3717𝑥ϯ + 1.353𝑥Κ − 0.4013𝑥Θ + 0.07348𝑥ϩd𝑥
φӳЈЈΚ

Ј

 

𝑉 = |428.5𝑥 − 0.03006𝑥ϵ + 0.4923𝑥ϯ + 0.5929𝑥Κ + 0.2706𝑥Θ − 0.06688𝑥ϩ + 0.01050𝑥Ϩ|Ј
φӳЈЈΚ 

𝑉 = 1351.830627659625… 

𝑉 = 1351.83 mϯ
(ϵտӳӳ) (21) 

The surface area can be calculated by substituting Equations (16-18) into Equation (4): 

𝐴 = 𝜋 ௷ 𝑅(𝑥)

⎝

⎜⎛ఌ1 + গ
d𝑇

d𝑥
ঘ

ϵ

+ ఌ1 + গ
d𝐵

d𝑥
ঘ

ϵ

⎠

⎟⎞d𝑥
ս

Ј

 

Since 𝑇(𝑥),𝐵(𝑥) and 𝑅(𝑥) are piecewise functions, the total surface area can be calculated by 

summing up the surface area for each individual 𝑖֏փ interval: 

𝐴 = 𝜋 ం௷ 𝑅ք(𝑥)

⎝

⎜⎛ఌ1 + গ
d𝑇ք

d𝑥
ঘ

ϵ

+ ఌ1 + গ
d𝐵ք

d𝑥
ঘ

ϵ

⎠

⎟⎞
(ք+φ)խ

քխ

d𝑥
ֆ

ք=Ј

(22) 

, where 𝐿 is the interval length and 𝑅ք(𝑥) is the 𝑖Ϭ function of 𝑅(𝑥), 𝑇ք is the 𝑖Ϭ function of 

𝑇(𝑥), 𝐵ք is the 𝑖Ϭ function of 𝐵(𝑥), which all lies between 𝑖𝐿 < 𝑥 < (𝑖 + 1)𝐿. Applying the 

function collapsing as depicted in Figure 15, Equation (22) can be simplified to: 

𝐴 = 𝜋 ௷ ం𝑅ք(𝑥 + 𝑖𝐿)

⎝

⎜⎛ఌ1 + গ
d(𝑇ք(𝑥 + 𝑖𝐿))

d𝑥
ঘ

ϵ

+ ఌ1 + গ
d(𝐵ք(𝑥 + 𝑖𝐿))

d𝑥
ঘ

ϵ

⎠

⎟⎞d𝑥
ֆ

ք=Ј

խ

Ј
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𝐴 = 𝜋 ௷

⎝

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎛

(0.03532 + 1.412𝑥 − 0.7802𝑥ϵ + 0.2432𝑥ϯ)(

ఌ1 + গ
d

d𝑥
(1.911 + 1.342𝑥 − 0.5741𝑥ϵ + 0.1933𝑥ϯ)ঘ

ϵ

+

ఌ1 + গ
d

d𝑥
(1.841 − 1.482𝑥 + 0.9862𝑥ϵ − 0.2932𝑥ϯ)ঘ

ϵ

)

⋮
((−2.398E+4 + 1118(𝑥 + 64𝐿) − 17.39(𝑥 + 64𝐿)ϵ + 0.09014(𝑥 + 64𝐿)ϯ)(

⎷

ఇఇ
ఈ

1 + ৃ
d

d𝑥
গ

2.292E+04 − 1070(𝑥 + 64𝐿) +

16.66(𝑥 + 64𝐿)ϵ + −0.08646(𝑥 + 64𝐿)ϯ
ঘৄ

ϵ

+

⎷

ఇఇ
ఈ

1 + ৃ
d

d𝑥
গ

−2.503E+04 + 1167(𝑥 + 64𝐿) −

18.12(𝑥 + 64𝐿)ϵ + 0.09382(𝑥 + 64𝐿)ϯ
ঘৄ

ϵ

)
⎠

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎞

d𝑥
խ

Ј

 

Since the above cannot be solved analytically, 𝐴 is calculated using a graphical calculator: 

𝐴 = 1018.059027142908… 

𝐴 = 1018.06 mϵ
(ϵտӳӳ) (23) 

Therefore, the volume of the fuselage is 1351.83 mϯ and the surface area is 1018.06 mϵ. 

With regard to the reliability of the results, as Figure 13 indicates, the top and bottom curves 

seem match the true boundaries exactly, without experiencing major issues with underfitting 

or overfitting, suggesting that the results are highly reliable. However, I wondered, did this 

method fail or succeed, and does the volume and surface area in fact match the real-life? 

3.3 Validation of results with real-life model 

To validate my results, I downloaded the official CAD drawings for the A350-900 aircraft 

(Airbus, 2014). After isolating the fuselage of the aircraft, I was able to load the 3D model:  

Figure 16. A 3D model of the A350-900 loaded using SketchUp. 
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By inspecting the entity information of the aircraft in the side panel of SketchUp, I was able 

to compare the volume and the surface area of the fuselage to my results: 

Method 
Volume 

(𝐦ه) 
Surface Area 

(𝐦و) 

Percentage 
Error in 
Volume 

Percentage 
Error in 

Surface Area 

Exact (Official) 1516.92 1097.09 -- -- 
Simple Quartic 

Regression 
1341.64 1011.69 11.55% 7.784% 

Piecewise Regression 
with Cubic Splines 

1351.83 1018.06 10.88% 7.204% 

Table 1. A comparison of the results. 

As shown in the table above, the method of piecewise regression with cubic splines is superior 

in terms of accuracy in both the volume and surface area of the fuselage. Since the percentage 

error is also reasonably low, it can be said that my model is highly accurate and reliable. While 

I was able to successfully obtain the volume and surface area of the fuselage, this brings me 

back to the second main aim of this investigation – how do I optimise the dimensions of the 

fuselage, such that there is a minimal aerodynamic drag incurred? 

4 Optimisation of length and radius of fuselage 

In the airline industry, one of the major aspects for determining the profitability of an airline 

is the fuel efficiency of the aircraft. If the shape of the aircraft is suboptimal, this will cause 

large amounts of aerodynamic drag, reducing the fuel efficiency of the flight. I am therefore 

intrigued to find out, given two scalars: 

1. The length multiplier (𝑘և), controls the scale factor of the length of the fuselage 

2. The radius multiplier (𝑘֍), controls the scale factor of the radius of the fuselage 

What are the optimum values for 𝑘և and 𝑘֍ to minimise aerodynamic drag 𝐷, given that the 

volume of the aircraft 𝑉  must stay constant at 1351.83 mϯ?  

Figure 17. Issues with disproportionate multipliers resulting in large amounts of aerodynamic drag. 
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4.1 Formulation for the Drag Equation (𝑫) 

According to NASA (2021), the aerodynamic drag of an aircraft varies largely between different 

aircrafts and conditions, such as speed, altitude, temperature. However, the aerodynamic drag 

of an aircraft is generally agreed to follow the following relation: 

𝐷 ∝ 0.07447𝐴֒ր֏֏րտ + 0.9255𝐴ց֍֊։֏ռև (24) 

where 𝐴֒ր֏֏րտ is the wetted area of the fuselage, which corresponds to the surface area of the 

aircraft, 𝐴ց֍֊։֏ռև is the area of the fuselage projected onto the front view. By substituting in 

the area function obtained previously in Equation (22) into (24), this gives: 

𝐷 = 0.07447௷ ం𝑅ք(𝑥 + 𝑖𝐿)

⎝

⎜⎛ఌ1 + গ
d(𝑇ք(𝑥 + 𝑖𝐿))

d𝑥
ঘ

ϵ

+ ఌ1 + গ
d(𝐵ք(𝑥 + 𝑖𝐿))

d𝑥
ঘ

ϵ

⎠

⎟⎞d𝑥
ֆ

ք=Ј

խ

Ј

+ 0.9255(𝜋𝑅ֈռ )ϵ 

To represent the drag equation as a multivariable function, according to the geometry of the 

aircraft, when 𝑘֍ is changed, this vertically scales the position of the curves along the 𝑧-axis 

with a scale factor of 𝑘֍. When 𝑘և is changed, this horizontally scales the position of the curves 

with a scale factor of φ
ֆՑ

. Therefore, the equation for aerodynamic drag is: 

𝐷(𝑘և, 𝑘֍) = 0.07447௷ ం𝑘֍𝑅ք গ
𝑥

𝑘և

+ 𝑖𝐿ঘ

⎝

⎜⎜
⎛

⎷

ఇ
ఇ
ఈ

1 +

⎝

⎜⎛𝑘֍

d(𝑇ք(
𝑥
𝑘և

+ 𝑖𝐿))

d𝑥
⎠

⎟⎞

ϵ
ֆ

ք=Ј

ֆՑխ

Ј

+

⎷

ఇ
ఇ
ఈ

1 +

⎝

⎜⎛𝑘֍

d(𝐵ք(
𝑥
𝑘և

+ 𝑖𝐿))

d𝑥
⎠

⎟⎞

ϵ

⎠

⎟⎟
⎞

d𝑥 + 0.9255𝜋(𝑘֍𝑅ֈռ )ϵ 

(26) 

4.2 Formulation of the Volume Equation (𝑽 ) 

Similar to the approach in Equation (26), by applying the relevant scale factors to Equation 

(20), a multivariable equation with inputs 𝑘և and 𝑘֍ is calculated to be: 

𝑉 (𝑘և, 𝑘֍) = 𝜋 ௷ ంৃ𝑘֍𝑅ք গ
𝑥

𝑘և

+ 𝑖𝐿ঘৄ

ϵ

d𝑥
ֆ

ք=Ј

ֆՑխ

Ј

(27) 
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4.3 Lagrange Multipliers 

In order to visualise how the aerodynamic drag function 𝐷(𝑘և, 𝑘֍) is minimised given a 

constrained volume, a graph of the drag function with 𝑘և on the 𝑥-axis and 𝑘֍ on the 𝑦-axis is 

created using the matplotlib and sympy Python packages, as shown below: 

Figure 18. A colourmap and the vector field of the drag function with the inputs 𝑘և and 𝑘֍ and a 
contour line for which 𝑉 = 1351.83 mϯ 

In the graph above, the colour of a specific position denotes the strength of the aerodynamic 

drag 𝐷. As expected, the aerodynamic drag appears to increase as 𝑘և and 𝑘֍ increases. The 

black arrow on the graph denotes the vector field of the aerodynamic drag function, which 

points to the direction of its gradient of steepest ascent, ∇𝐷, whereas the white arrows on the 

graph denote the vector field of the volume function, which has the direction ∇𝑉 . 

Given that the aircraft manufacturer would like to minimise the aerodynamic drag 𝐷 for the 

A350-900, then the optimum dimensions would be the coordinates somewhere along the 

contour line for which the 𝐷 is at its minimum. To find this location, ∇𝐷 (black arrows) must 

point in the same direction as the ∇𝑉  (white arrows), forming the following equality: 
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∇𝐷 = 𝜆∇𝑉 (28) 

, where ∇𝐷 is the gradient of the drag function, ∇𝑉  is the gradient of the volume function, 

and 𝜆 is the Lagrange multiplier. By rewriting the gradients in its vector form: 

⎣

⎢
⎢
⎡

𝜕𝐷

𝜕𝑘և

𝜕𝐷

𝜕𝑘֍⎦

⎥
⎥
⎤

= 𝜆

⎣

⎢
⎢
⎡

𝜕𝑉

𝜕𝑘և

𝜕𝑉

𝜕𝑘֍⎦

⎥
⎥
⎤

(29) 

And combining it with the constraint function of 𝑉 (𝑘և, 𝑘֍) = 1351.83 𝑚ϯ, this yields a system 

of equations with three unknowns, 𝑘և, 𝑘֍ and 𝜆: 

⎩


⎨



⎧ 𝜕𝐷

𝜕𝑘և

− 𝜆
𝜕𝑉

𝜕𝑘և

= 0

𝜕𝐷

𝜕𝑘֍

− 𝜆
𝜕𝑉

𝜕𝑘֍

= 0

𝑉 (𝑘և, 𝑘֍) = 1351.83

(30) 

However, because the partial derivatives of the drag equation and the volume equation are too 

complex to be solved by hand, I decided to pass Equation (30) through a solver in the scipy 

Python package. Solving Equation (30) yielded one solution: 

𝑘և 𝑘֍ 𝜆 
0.8195290969499447 1.1046324860579495 0.05084322098344 

Table 2. The results after the optimisation of the fuselage dimensions using Lagrange multipliers. 

As the results indicate, to increase the aerodynamical efficiency of the aircraft, the length of 

A350-900 cabin should be reduced by 18.04% and the radius should be increased by 10.46%. 

However, I wondered how much aerodynamic drag is reduced by this change. By substituting 

in 𝑘և and 𝑘֍ into the drag equation, I am surprised to find that the aerodynamic drag has only 

been reduced by 0.94%, which leads me to believe that the engineers at Airbus has already 

optimised the fuselage to its greatest extent. 

5 Conclusion 

In conclusion, this investigation was able to accurately determine the volume and the surface 

area of the fuselage of an A350-900, through the use of simple quartic regression and piecewise 

regression using cubic splines. This investigation was also able to optimise the dimensions of 
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the aircraft to minimise the aerodynamic drag, through the use of Lagrange multipliers. This 

investigation has also demonstrated that similar concepts can easily applied to other types of 

aircraft. 

6 Evaluation 

Throughout this investigation, the maximisation of accuracy and the minimisation of human 

bias has been placed at a high priority. By processing the images through a sophisticated 

algorithm that automatically extracts the location of the pixels, this ensures that there are 

plenty of data for the regression, increasing the representativeness of the curves. By conducting 

the measurement of the volume and surface area using different techniques, I was able to 

demonstrate a high level of precision throughout the process. Most of the tedious calculation 

works, such as summation and integration has also been performed using Python scripts, which 

increases the reproducibility of the data and also minimises human input errors. 

Despite efforts to maximise the precision of the 

measurements there are several issues with the 

depiction of the aircraft as being formed entirely 

with circular disks. The generalisation that the 

cross-section of the aircraft is perfectly circular is 

also untrue, specifically near the fuel tanks, where 

there is a bulge that is obviously not circular. This 

is potentially one of the main reasons why the 

volume of the aircraft is underestimated by 10%, in 

which major volumes of the aircraft are not included 

in the calculations. The assumption that the 

fuselage is composed of circular disks are also not 

true to some aircraft families, such as the Antonov-

225, Boeing B747 or the DC-1.  

Figure 19. Demonstration that the 
fuel tank of the fuselage is often not 
composed of circular disks, which 
causes an underestimation of the 

volume and surface area. 
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In order to solve this issue, the accuracy can be further improved by obtaining regular cross-

sections of the aircraft, and to model its shape using parametric equations. With the use of 

triple integrals, the issue with the underrepresentation of the volume and surface area of the 

fuselage can be mitigated. Furthermore, there may also be a possibility that the aircraft model 

I own do not actually match the real aircraft. To solve this, I could have used a 3D laser 

scanner or use photogrammetry but considering that that the volume and surface area has 

already been calculated to a high degree of accuracy, this was unneeded. 

One of the major limitations during the piecewise regression using cubic splines was that I was 

uncertain of the number of intervals to use. Despite the abundance of data, I only chose 65 

intervals for the regression due to limitations in the hardware performance. This can be solved 

by using professional statistical programming languages such as R, which would also have 

allowed me to have access to a greater number of tools and data visualisations. 

Regardless, while this IA has exhibited some limitations when it comes to the assumptions of 

the aircraft geometry, it has demonstrated that it is possible to accurately model the volume 

and surface area of an aircraft, as well as perform the optimisation of aircraft dimensions solely 

from a single photo, this process can easily be replicated by other researchers and applied to 

other aircraft models.  
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8 Appendix 
Filename: 1_sobel.py 

import cv2 
 
raw = cv2.imread('data/0_side.jpg') 
cv2.imwrite('data/0_side_cropped.jpg', raw[2673:3237, 102:5871]) 
 
raw_grey = cv2.cvtColor(raw, cv2.COLOR_BGR2GRAY) 
raw_grey_canny = cv2.Canny(raw_grey, threshold1=10, threshold2=50, L2gradient=True) 
cv2.imwrite('data/1_side_edges.jpg', raw_grey_canny) 
cv2.imwrite('data/0_side_edges_cropped.jpg', cv2.bitwise_not(raw_grey_canny)[2673:3237, 
102:5871]) 

Filename: 3_coords.py 
import cv2 
import pandas as pd 
import matplotlib.pyplot as plt 
import matplotlib.font_manager as fm 
 
ASPECT_RATIO = 564/5769 
fm.fontManager.addfont('fonts/latinmodern-math.otf') 
plt.rcParams["font.family"] = "Latin Modern Math" 
plt.rcParams["mathtext.fontset"] = "cm" 
plt.imshow(plt.imread('data/0_side_edges_cropped.jpg'), extent=[0, 65.27, 0, 
65.27*ASPECT_RATIO], cmap='gray') 
 
for part in ['top', 'bottom']: 
    image = cv2.cvtColor(cv2.imread(f'data/3_side_edges_clean_{part}.png')[2673:3237, 
102:5871], cv2.COLOR_BGR2GRAY) 
    h, w = image.shape 
    pxToM = 65.27 / (w-1) # multiplier 
 
    coords = [(x*pxToM, (h-y)*pxToM) for x in range(w) for y in range(h) if image[y, x] > 
128] 
    df = pd.DataFrame(coords, columns=('x', 'y')) 
    df.to_csv(f'data/3_coords_{part}.csv', index=False) 
 
    plt.plot(df.x, df.y, 'o', color='#E53935' if part == 'top' else '#1E88E5', markersize=.5) 
 
x0, x1, y0, y1 = plt.axis() 
plt.axis((6, 16, 4.5, 6.5)) 
plt.xlabel('$x$ (metres)') 
plt.ylabel('$z$ (metres)') 
plt.savefig('data/3_coords.png', dpi=600, transparent=True) 

Filename: 4_polynomial.py 
import numpy as np 
import pandas as pd 
from rich import inspect, print 
import sympy as sp 
import matplotlib.pyplot as plt 
import matplotlib.font_manager as fm 
 
NUM_INTERVALS = 65 
SAMPLES_PER_INTERVAL = 1000 
ASPECT_RATIO = 564/5769 
 
df_top = pd.read_csv('data/3_coords_top.csv') 
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df_bottom = pd.read_csv('data/3_coords_bottom.csv') 
 
MIN = max(df_top.x.min(), df_bottom.x.min()) 
MAX = min(df_top.x.max(), df_bottom.x.max()) 
BREAKPOINTS = np.linspace(MIN, MAX, num=NUM_INTERVALS+1) 
INTERVAL_WIDTH = (MAX - MIN) / NUM_INTERVALS 
x = sp.Symbol('x', positive=True, real=True) 
 
def fit(deg): 
    poly_top, poly_bottom = None, None 
 
    df_top_filtered = df_top[(df_top.x >= MIN) & (df_top.x <= MAX)].dropna() 
    df_bottom_filtered = df_bottom[(df_bottom.x >= MIN) & (df_bottom.x <= MAX)].dropna() 
 
    poly_top = np.polynomial.polynomial.polyfit(df_top_filtered.x, df_top_filtered.y, 
deg=deg, full=False) 
    poly_bottom = np.polynomial.polynomial.polyfit(df_bottom_filtered.x, 
df_bottom_filtered.y, deg=deg, full=False) 
    poly_radius = (poly_top - poly_bottom) / 2 
    poly_camber = (poly_top + poly_bottom) / 2 
    R = sum(coeff*x**order for order, coeff in enumerate(poly_radius)) 
    T = sum(coeff*x**order for order, coeff in enumerate(poly_top)) 
    B = sum(coeff*x**order for order, coeff in enumerate(poly_bottom)) 
    V = np.pi*sp.Integral(R**2, (x, MIN, MAX)).evalf() 
    S = np.pi*sp.Integral(R*(sp.sqrt(1 + sp.diff(T, x)**2) + sp.sqrt(1 + sp.diff(B, x)**2)), 
(x, MIN, MAX)).evalf() 
    return [deg, V, S, poly_top, poly_bottom, poly_radius, poly_camber] 
 
def printeq(poly): 
    print(' + '.join(f'{coeff:.4g}x^{order}' for order, coeff in enumerate(poly))) 
 
if __name__ == '__main__': 
    _deg, V, S, poly_top, poly_bottom, poly_radius, poly_camber = fit(4) 
 
    printeq(poly_top) 
    printeq(poly_bottom) 
    printeq(poly_radius) 
    print(V) 
    print(S) 
 
    xs = np.linspace(MIN, MAX, 10000) 
    yts = sum(coeff*xs**order for order, coeff in enumerate(poly_top)) 
    ybs = sum(coeff*xs**order for order, coeff in enumerate(poly_bottom)) 
 
    fm.fontManager.addfont('fonts/latinmodern-math.otf') 
    plt.rcParams["font.family"] = "Latin Modern Math" 
    plt.rcParams["mathtext.fontset"] = "cm" 
    fig, ax = plt.subplots() 
    ax.imshow(plt.imread('data/0_side_edges_cropped.jpg'), extent=[0, 65.27, 0, 
65.27*ASPECT_RATIO], cmap='gray') 
    ax.plot(xs, yts, linestyle='dashed', color='#E53935', linewidth=.75) 
    ax.plot(xs, ybs, linestyle='dashed', color='#1E88E5', linewidth=.75) 
    ax.fill_between(xs, yts, ybs, color='#E5393511', linewidth=0) 
    x0, x1, y0, y1 = plt.axis() 
    plt.axis((x0-2, x1+2, y0-4, y1+4)) 
    ax.set_xlabel('$x$ (metres)') 
    ax.set_ylabel('$z$ (metres)') 
    plt.savefig('data/4_polynomial.png', dpi=600, transparent=True) 
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    plt.clf() 
 
    ax = plt.axes(projection='3d') 
    for x in np.linspace(MIN, MAX, 32): 
        theta = np.linspace(0, 2*np.pi, 360) 
        radius = sum(coeff*x**order for order, coeff in enumerate(poly_radius)) 
        camber = sum(coeff*x**order for order, coeff in enumerate(poly_camber)) 
        ax.plot3D(np.full(360, x), radius*np.sin(theta), radius*np.cos(theta)+camber, 
color='black', linewidth=.5) 
     
    ax.plot3D(xs, np.zeros(10000), yts, color='#E53935', linestyle='dashed', linewidth=.75) 
    ax.plot3D(xs, np.zeros(10000), ybs, color='#1E88E5', linestyle='dashed', linewidth=.75) 
 
    ax.set_xlabel('$x$ (metres)') 
    ax.set_ylabel('$y$ (metres)') 
    ax.set_zlabel('$z$ (metres)') 
 
    ax.set_xlim((-2, 68)) 
    ax.set_ylim((-30, 30)) 
    ax.set_zlim((-30, 30)) 
 
    plt.savefig('data/4_polynomial_3d.png', dpi=600, transparent=True) 
 
    # vs = [(deg, v, s) for deg, v, s, *_ in [fit(deg) for deg in range(2, 30)]] 
    # df = pd.DataFrame(vs) 
    # df.to_csv('data/4_vs_polynomial.csv', index=False) 

Filename: 4_spline.py 
import numpy as np 
import pandas as pd 
import statsmodels.api as sm 
import matplotlib.pyplot as plt 
from patsy import dmatrix 
import scipy.integrate as integrate 
from rich import inspect, print 
import matplotlib.pyplot as plt 
import matplotlib.font_manager as fm 
import math 
import sympy as sp 
 
ASPECT_RATIO = 564/5769 
NUM_INTERVALS = 65 
SAMPLES_PER_INTERVAL = 1000 
 
df_top = pd.read_csv('data/3_coords_top.csv') 
df_bottom = pd.read_csv('data/3_coords_bottom.csv') 
 
MIN = max(df_top.x.min(), df_bottom.x.min()) 
MAX = min(df_top.x.max(), df_bottom.x.max()) 
BREAKPOINTS = np.linspace(MIN, MAX, num=NUM_INTERVALS+1) 
INTERVAL_WIDTH = (MAX - MIN) / NUM_INTERVALS 
 
def printeq(poly): 
    print('+'.join(f'{coeff:.4g}x^{order}' for order, coeff in enumerate(poly))) 
 
if __name__ == '__main__': 
    poly_top, poly_bottom = [], [] 
    for df, df_type in zip((df_top, df_bottom), ('top', 'bottom')): 
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        # constuct a generalised linear model from B-spline basis matrix, of degree 3. 
        model = sm.GLM(df.y, dmatrix( 
            "bs(x, knots=k, include_intercept=False, degree=3)", { 
                'x': df.x, 
                'k': BREAKPOINTS 
            }, return_type='dataframe' 
        )).fit() 
 
        # since we cannot extract coefficients of the polynomial, 
        # we must resample it based on the model above. 
        sample = np.linspace(df.x.min(), df.x.max(), SAMPLES_PER_INTERVAL*NUM_INTERVALS) 
        sample_df = pd.DataFrame({ 
            "x": sample, 
            "y": model.predict(dmatrix( 
                "bs(x, knots=k, include_intercept=False, degree=3)", { 
                    'x': sample, 
                    'k': BREAKPOINTS 
                }, return_type='dataframe' 
            )) 
        }) 
 
        for k in range(1, len(BREAKPOINTS)): 
            lower_bound, upper_bound = BREAKPOINTS[k-1], BREAKPOINTS[k] 
            sample_bounded = sample_df[(sample_df.x >= lower_bound) & (sample_df.x <= 
upper_bound)].dropna() 
            # plt.plot(sample_bounded.x, sample_bounded.y) 
 
            poly = np.polynomial.polynomial.polyfit(sample_bounded.x, sample_bounded.y, 
deg=3, full=False) 
            poly_translated = np.polynomial.polynomial.polyfit(sample_bounded.x - 
INTERVAL_WIDTH*(k-1), sample_bounded.y, deg=3, full=False) 
 
            (poly_top if df_type == 'top' else poly_bottom).append({ 
                'i': k, 
                'poly': poly, 
                'poly_translated': poly_translated, 
            }) 
 
    t_coeffs_ut = [poly_top[k]['poly'] for k in range(NUM_INTERVALS)] 
    t_coeffs = [poly_top[k]['poly_translated'] for k in range(NUM_INTERVALS)] 
    t_coeffs_df = pd.DataFrame(t_coeffs, columns=('d', 'c', 'b', 'a')) 
    t_coeffs_df.to_csv('data/4_t_coeffs.csv', index=False) 
 
    b_coeffs_ut = [poly_bottom[k]['poly'] for k in range(NUM_INTERVALS)] 
    b_coeffs = [poly_bottom[k]['poly_translated'] for k in range(NUM_INTERVALS)] 
    b_coeffs_df = pd.DataFrame(b_coeffs, columns=('d', 'c', 'b', 'a')) 
    b_coeffs_df.to_csv('data/4_b_coeffs.csv', index=False) 
 
    r_coeffs_ut = [(poly_top[k]['poly'] - poly_bottom[k]['poly']) / 2 for k in 
range(NUM_INTERVALS)] 
    r_coeffs = [(poly_top[k]['poly_translated'] - poly_bottom[k]['poly_translated']) / 2 for 
k in range(NUM_INTERVALS)] 
    r_coeffs_df = pd.DataFrame(r_coeffs, columns=('d', 'c', 'b', 'a')) 
    r_coeffs_df.to_csv('data/4_r_coeffs.csv', index=False) 
 
    c_coeffs_ut = [(poly_top[k]['poly'] + poly_bottom[k]['poly']) / 2 for k in 
range(NUM_INTERVALS)] 
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    printeq(t_coeffs_ut[0]) 
    printeq(t_coeffs_ut[-1]) 
    printeq(b_coeffs_ut[0]) 
    printeq(b_coeffs_ut[-1]) 
 
    xs = np.linspace(MIN, MAX, 10000) 
    yts, ybs = [], [] 
    for x in xs: 
        ii = min(math.floor(x/INTERVAL_WIDTH), NUM_INTERVALS-1) 
        yts.append(sum(coeff*x**order for order, coeff in enumerate(t_coeffs_ut[ii]))) 
        ybs.append(sum(coeff*x**order for order, coeff in enumerate(b_coeffs_ut[ii]))) 
 
    fm.fontManager.addfont('fonts/latinmodern-math.otf') 
    plt.rcParams["font.family"] = "Latin Modern Math" 
    plt.rcParams["mathtext.fontset"] = "cm" 
    fig, ax = plt.subplots() 
    ax.imshow(plt.imread('data/0_side_edges_cropped.jpg'), extent=[0, 65.27, 0, 
65.27*ASPECT_RATIO], cmap='gray') 
    ax.plot(xs, yts, linestyle='dashed', color='#E53935', linewidth=.75) 
    ax.plot(xs, ybs, linestyle='dashed', color='#1E88E5', linewidth=.75) 
    ax.fill_between(xs, yts, ybs, color='#E5393511', linewidth=0) 
    for ii in range(1, NUM_INTERVALS): 
        x = ii*INTERVAL_WIDTH 
        ax.plot([x, x], [ 
            sum(coeff*x**order for order, coeff in enumerate(t_coeffs_ut[ii])), 
            sum(coeff*x**order for order, coeff in enumerate(b_coeffs_ut[ii])) 
        ], linewidth=.25, color='gray') 
    x0, x1, y0, y1 = plt.axis() 
    plt.axis((x0-2, x1+2, y0-4, y1+4)) 
    ax.set_xlabel('$x$ (metres)') 
    ax.set_ylabel('$z$ (metres)') 
    plt.savefig('data/4_spline.png', dpi=600, transparent=True) 
 
    plt.clf() 
 
    ax = plt.axes(projection='3d') 
    for x in np.linspace(MIN, MAX, 32): 
        ii = min(math.floor(x/INTERVAL_WIDTH), NUM_INTERVALS-1) 
        theta = np.linspace(0, 2*np.pi, 360) 
 
        radius = sum(coeff*x**order for order, coeff in enumerate(r_coeffs_ut[ii])) 
        camber = sum(coeff*x**order for order, coeff in enumerate(c_coeffs_ut[ii])) 
        ax.plot3D(np.full(360, x), radius*np.sin(theta), radius*np.cos(theta)+camber, 
color='black', linewidth=.5) 
     
    ax.plot3D(xs, np.zeros(10000), yts, color='#E53935', linestyle='dashed', linewidth=.75) 
    ax.plot3D(xs, np.zeros(10000), ybs, color='#1E88E5', linestyle='dashed', linewidth=.75) 
 
    ax.set_xlabel('$x$ (metres)') 
    ax.set_ylabel('$y$ (metres)') 
    ax.set_zlabel('$z$ (metres)') 
 
    ax.set_xlim((-2, 68)) 
    ax.set_ylim((-30, 30)) 
    ax.set_zlim((-30, 30)) 
 
    plt.savefig('data/4_spline_3d.png', dpi=600, transparent=True) 
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    # encapsulating the sum within the integrand 
    vol, vol_unc = integrate.quad( 
        lambda w: sum(np.pi*np.power(a*np.power(w,3) + b*np.power(w,2) + c*w + d, 2) for d, 
c, b, a in r_coeffs), 
        0, INTERVAL_WIDTH 
    ) 
    sa, sa_unc = integrate.quad( 
        lambda w: sum(np.pi*( 
            a*np.power(w,3) + b*np.power(w,2) + c*w + d) * ( 
                np.sqrt(1 + np.power(3*ta*np.power(w, 2) + 2*tb*w + tc, 2)) +  
                np.sqrt(1 + np.power(3*ba*np.power(w, 2) + 2*bb*w + bc, 2)) 
            ) for (d, c, b, a), (td, tc, tb, ta), (bd, bc, bb, ba) in zip(r_coeffs, t_coeffs, 
b_coeffs)), 
        0, INTERVAL_WIDTH 
    ) 
 
    print(f'Volume: {vol} ± {vol_unc} m3') 
    print(f'Surface Area: {sa} ± {sa_unc} m2') 

Filename: 6_lagrange.py 
import pandas as pd 
import sympy as sp 
from scipy.optimize import fsolve 
from rich import print, inspect 
from timeit import default_timer as timer 
from matplotlib import pyplot as plt 
import matplotlib.font_manager 
import numpy as np 
spline = __import__('4_spline') 
 
# setups 
matplotlib.font_manager.fontManager.addfont('fonts/latinmodern-math.otf') 
plt.rcParams["font.family"] = "Latin Modern Math" 
plt.rcParams["mathtext.fontset"] = "cm" 
printl = lambda f: print(sp.latex(f, long_frac_ratio=3, order='lex'), '\n____') 
 
# variables 
t_coeffs = tuple(pd.read_csv('data/4_t_coeffs.csv').itertuples(index=False, name=None)) 
b_coeffs = tuple(pd.read_csv('data/4_b_coeffs.csv').itertuples(index=False, name=None)) 
r_coeffs = tuple(pd.read_csv('data/4_r_coeffs.csv').itertuples(index=False, name=None)) 
l = sp.Symbol('l', positive=True, real=True) # length 
kr = sp.Symbol('k_r', real=True) # radius multiplier 
kl = sp.Symbol('k_l', real=True) # length multiplier 
INTERVAL_WIDTH = spline.INTERVAL_WIDTH # 1.0039797556812118 
V_TARGET = 1351.8306276596234 # m3 
# MAX_R = max(sp.maximum(a*l**3 + b*l**2 + c*l + d, l, sp.sets.Interval(0, INTERVAL_WIDTH)) 
for d, c, b, a in r_coeffs) # 3.08446945187677 
MAX_R = 3.08446945187677 
C_P_REL = 0.9255319158724 # relative because of floating point precision issues 
 
V = sp.pi*kr**2*kl*sp.Integral(sum((a*l**3 + b*l**2 + c*l + d)**2 for d, c, b, a in 
r_coeffs), (l, 0, INTERVAL_WIDTH)) 
V_func = sp.lambdify([kl, kr], V) 
V_grad_func = sp.lambdify([kl, kr], [sp.diff(V, kl), sp.diff(V, kr)]) 
 
A = sp.pi*kl*kr*sp.Integral(sum((a*l**3 + b*l**2 + c*l + d) * ( 
    sp.sqrt(1 + kr**2*(3*ta*l**2 + 2*tb*l + tc)**2) +  
    sp.sqrt(1 + kr**2*(3*ba*l**2 + 2*bb*l + bc)**2) 
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) for (d, c, b, a), (td, tc, tb, ta), (bd, bc, bb, ba) in zip(r_coeffs, t_coeffs, b_coeffs)), 
(l, 0, INTERVAL_WIDTH)) 
 
# A = 2*sp.pi*kl*kr*sp.Integral(sum((a*l**3 + b*l**2 + c*l + d)*sp.sqrt(1 + kr**2*(3*a*l**2 + 
2*b*l + c)**2) for d, c, b, a in r_coeffs), (l, 0, INTERVAL_WIDTH)) 
A_func = sp.lambdify([kl, kr], A) 
A_grad_func = sp.lambdify([kl, kr], [sp.diff(A, kl), sp.diff(A, kr)]) 
 
D = A * (1-C_P_REL) + sp.pi*(MAX_R*kr)**2 * C_P_REL 
D_func = sp.lambdify([kl, kr], D) 
D_grad_func = sp.lambdify([kl, kr], [sp.diff(D, kl), sp.diff(D, kr)]) 
 
## CALCULATIONS FOR CONSTRAINED OPTIMISATION 
if True: 
    def eqs(X): 
        klv, krv, λv = X 
        δVδkl, δVδkr = V_grad_func(klv, krv) 
        δDδkl, δDδkr = D_grad_func(klv, krv) 
        # print(f'@ {klv}, {krv}: ∇V=[{δVδkl}, {δVδkr}], ∇D=[{δDδkl}, {δDδkr}], 
V={V_func(klv, krv)}') 
        return [ 
            δDδkl - (λv * δVδkl), 
            δDδkr - (λv * δVδkr), 
            V_func(klv, krv) - V_TARGET, 
        ] 
     
    duo = D_func(1, 1) 
    klo, kro, λo = fsolve(eqs, [1., 1., 1.]) 
    do = D_func(klo, kro) 
 
    print(f'Solution: kl={klo}, kr={kro}, λ={λo}, d={do/duo:.2%}') 
     
## VISUALISATIONS 
if True: 
    resolution = 20 
    kl_range, kr_range = np.linspace(0, 2, resolution), np.linspace(0, 2, resolution) 
    kl_mesh, kr_mesh = np.meshgrid(kl_range, kr_range) 
 
    # automatic vectorisation 
    V_grad = V_grad_func(kl_mesh, kr_mesh) 
    V_val = V_func(kl_mesh, kr_mesh) 
 
    # manual vectorisation because sympy fails to handle it 
    D_val = [] 
    D_grad_l, D_grad_r = [], [] 
    for kri in kr_range: 
        D_val.append([D_func(kli, kri) for kli in kl_range]) 
        D_grad_l0, D_grad_r0 = [], [] 
        for kli in kl_range: 
            klg, krg = D_grad_func(kli, kri) 
            D_grad_l0.append(klg); D_grad_r0.append(krg) 
        D_grad_l.append(D_grad_l0); D_grad_r.append(D_grad_r0) 
 
    # contour = plt.contourf(kl_range, kr_range, V_val, 500, cmap='turbo') 
    # plt.quiver(kl_mesh, kr_mesh, V_grad[0], V_grad[1]) 
    # cbar = plt.colorbar(contour) 
    # cbar.set_label('Volume of fuselage') 
    # plt.savefig('data/6_V_contour.png', dpi=600, transparent=True) 
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    # plt.clf() 
 
    contour = plt.contourf(kl_range, kr_range, D_val, 500, cmap='turbo') 
    plt.contour(kl_range, kr_range, V_val, [V_TARGET], cmap='turbo') 
    plt.quiver(kl_mesh, kr_mesh, D_grad_l, D_grad_r) 
    cbar = plt.colorbar(contour) 
    cbar.set_label('Fuselage aerodynamic drag') 
    plt.xlabel('$k_l$') 
    plt.ylabel('$k_r$') 
    plt.savefig('data/6_D_countour.png', dpi=600, transparent=True) 

 

 




